Using metals with high thermoelectric power …

Using metals with high thermoelectric power factor to create efficient all-solid-state active cooler

A team of researchers from the Ohio State University and the University of Virginia has found a way to use metals with a high thermoelectric power factor to create efficient all-solid-state active coolers. In their paper published in the journal Physical Review Applied, the group describes their new approach to cooling electronic devices and how well it worked.

Active cooling systems, by definition, are cooling systems that use electricity to cool a hot or warm device down to ambient temperatures. In this new effort, the researchers have found that such systems could benefit from the use of special metals. They also coined a new term to use as a metric—effective thermal conductivity. In active cooling systems, heat-carrying charge carriers flow from the hot side of an object to the cooler side when electricity is applied—effective thermal conductivity is a number that is calculated by adding a system’s active thermal conductivity (when electricity is applied) to its passive conductivity (when the electricity is off).

As the researchers note, most commercial cooling systems have been optimized over the years for use in refrigeration applications, and are thus not ideal for active cooling situations such as removing heat from a computer. They note also that engineers typically use a measure called the thermoelectric figure of merit (zT) to describe the efficiency of such systems. But again, they suggest it is not a good metric for active cooling systems.

Read more.

Do NOT follow this link or you will be banned from the site!