Taming defective porous materials for robust…

Taming defective porous materials for robust and selective heterogeneous catalysis

The production of 1-butene via ethylene dimerization is one of the few industrial processes that employs homogeneous catalysis due to its high selectivity, despite the massive amounts of activators and solvents required. Now, a new paper by the University of the Basque Country (UPV/EHU), in collaboration with the López group at the Institute of Chemical Research of Catalonia (ICIQ) and RTI International, shows a more sustainable alternative via metal-organic frameworks (MOFs), a family of porous materials formed by metallic nodes connected through organic ligands.

The scientists demonstrate that tailored MOFs under condensation regimes catalyze the ethylene dimerization to 1-butene with high selectivity and stability in the absence of activators and solvent. The research, published in Nature Communications, opens new avenues to develop robust heterogeneous catalysts for a wide variety of gas-phase reactions.

The researchers engineered defects in the MOF (Ru)HKUST-1 without compromising the framework structure via two strategies: a conventional ligand exchange approach during MOF synthesis, and a pioneering post-synthetic thermal approach. The researchers then characterized the defects, which have been shown to be catalytically active for ethylene dimerization.

Read more.

Do NOT follow this link or you will be banned from the site!