Regular

Charging into the future: novel rock salt for use in rechargeable magnesium batteries

A unique method to use novel rock salt in rechargeable magnesium batteries

Life today depends heavily on electricity. However, the unrelenting demand for electricity calls for increasingly greener and “portable” sources of energy. Although windmills and solar panels are promising alternatives, the fluctuation in output levels depending on external factors renders them as unreliable. Thus, from the viewpoint of resource allocation and economics, high-energy density secondary batteries are the way forward. By synthesizing novel material (a metal compound) for electrode that facilitates reversing of the chemistry of ions, a group of researchers led by Prof. Idemoto from Tokyo University of Science combat the wasteful aspects of energy sources by laying an important foundation for the production of next-generation rechargeable magnesium secondary batteries. The researchers are optimistic about the discovery and state, “We synthesized a rock salt type that has excellent potential for being used as the positive electrode material for next-generation secondary batteries.”

The most popular source of portable energy, a battery comprises three basic components – the anode, the cathode, and the electrolyte. These participate in an interplay of chemical reactions whereby the anode produces extra electrons (oxidation) that are absorbed by the cathode (reduction), resulting in a process known as redox reaction. Because the electrolyte inhibits the flow of electrons between the anode and cathode, the electrons preferentially flow through an external circuit, thus initiating a flow of current or “electricity.” When the material in the cathode/anode can no longer absorb/shed electrons, the battery is deemed dead.

However, certain materials allow us to reverse the chemistry, using external electricity that runs in the opposite direction, such that the materials may return to their original state. Such rechargeable batteries are similar to the ones used in portable electronic devices such as mobile phones or tablets.

Read more.

Do NOT follow this link or you will be banned from the site!