Less can be more: Semiconductor nanowires fo…

Less can be more: Semiconductor nanowires for flexible photovoltaics

Capturing and manipulating light at nanoscale is a key factor to build high efficiency solar cells. Researchers in the 3-D Photovoltaics group have recently presented a promising new design. Their simulations show that vertically stacked nanowires on top of ultrathin silicon films reduces the total amount of material needed by 90 percent while increasing the efficiency of the solar cell. These promising simulation results are an important step toward next-generation solar cells. The results have been published on May 23rd in Optics Express.

A strategy to reduce cost and rigidity of photovoltaics is to combine ultrathin silicon photovoltaic films with semiconductor nanowire solar cells. The mechanical flexibility and resilience of micrometer thin cells make them well suited to apply on curved surfaces.

The idea is to optically couple the two materials stacked on top of each other as a tandem cell: a gallium arsenide (GaAs) nanowire array on top of an ultrathin silicon (2um-thick) film. GaAs vertical nanowires are well-known semiconductor components in photovoltaic applications.

Read more.

Do NOT follow this link or you will be banned from the site!