An introduction to UK energy consumption

sci:

image

Having previously
explored the various ways in which energy is supplied in the UK, this article
highlights UK energy consumption by fuel type and the sectors it is consumed
in. 

But before proceeding, it is important to first distinguish between the
terms ‘primary
energy consumption
’ and ‘final energy consumption’. The
former refers to the fuel type in its original state before conversion and
transformation. The latter refers to energy consumed by end users.

Primary energy consumption by fuel type

image

Oil consumption is on the decline.

In 2018, UK primary
energy consumption was 193.7 m tonnes of oil equivalent. This value
is down 1.3% from 2017 and down 9.4% from 2010. This year, the trend has
continued so far. Compared to the same time period last year, the first three
months of 2019 have shown a declination of 4.4% in primary fuel consumption.

It
is also important to identify consumption trends for specific fuels. Figure 1 below illustrates the percentage increases and
decreases of consumption per fuel type in 2018 compared to 2017 and 2010.

image

Figure 1 shows UK Primary Energy Consumption by Fuel Type in 2018 Compared to 2017
& 2010.
 Figure: BEIS

As can be seen in
2018, petroleum and natural gas were the most consumed fuels. However, UK coal
consumption has dropped by almost 20% since 2017 and even more significantly
since 2010. But perhaps the most noticeable percentage change in fuel
consumption is that of renewable fuels like bioenergy and wind, solar and hydro
primary electricity. 

In just eight years, consumption of these fuels increased by
124% and 442%, respectively, thus emphasising the increasingly important role
renewables play in UK energy consumption and the overall energy system.

Final energy consumption by sector

Overall, the UK’s final energy consumption in
2018, compared to 2017, was 0.7% higher at a value of approximately 145
m tonnes of oil equivalent. However, since 2010, consumption has still
declined by approximately 5%. More specifically, figure 2 illustrates consumption for individual sectors
and how this has changed since.

image

Figure 2 from UK Final Energy Consumption by Sector in 2018 Compared to 2017 &
2010.
 Figure: BEIS

Immediately, it is
seen that the majority of energy, consumed in the UK, stems from the transport
and domestic sector. Though the domestic sector has reduced consumption by 18%
since 2010, it still remains a heavy emitting sector and accounted for 18% of
the UK’s total carbon dioxide emissions in 2018. 

Therefore, further efforts
but be taken to minimise emissions. This could be achieved by increasing
household energy efficiency and therefore reducing energy consumption and/or switching to alternative fuels.

image

Loft insulation is an example of increasing household energy efficiency.

Overall, since 2010, final energy consumption
within the transport sector has increased by approximately 3%. In 2017, the
biggest percentage increase in energy consumption arose from air transport. 

Interestingly, in 2017, electricity consumption in the transport sector
increased by 33% due to an increased number of electric vehicles on the road.
Despite this, this sector still accounted for one-third of total UK
carbon emissions in 2018.  

image

Year upon year,
the level of primary electricity consumed from renewables has increased and the percentage of
coal consumption has declined significantly, setting a positive trend for years to come.

Reace Edwards is a member of SCI’s Energy group and a PhD Chemical Engineering student at the University of Chester. Read more about her involvement with SCI here or watch her recent TEDx Talk here. 

An atomic-scale erector set

An atomic-scale erector set

To predict building damage, Kostas Keremidis of the MIT Concrete Sustainability Hub is modeling structures as ensembles of atoms.

To design buildings that can withstand the largest of storms, Kostas Keremidis, a PhD candidate at the MIT Concrete Sustainability Hub, is using research at the smallest scale — that of the atom.

His approach, which derives partially from materials science, models a building as a collection of points that interact through forces like those found at the atomic scale.

“When you look at a building, it is actually a series of connections between columns, windows, doors, and so on,” says Keremidis. “Our new framework looks at how different building components connect together to form a building like atoms form a molecule — similar forces hold them together, both at the atomic and building scale.” The framework is called molecular dynamics-based structural modeling.

Eventually, Keremidis hopes it will provide developers and builders with a new way to readily predict building damage from disasters like hurricanes and earthquakes.

Read more.

Black (nano)gold to combat climate change

Black (nano)gold to combat climate change

Global warming is a serious threat to the planet and living beings. One of the main causes of global warming is the increase in the atmospheric CO2 level. The main source of this CO2 is from the burning of fossil fuels in our daily lives (electricity, vehicles, industry and many more).

Researchers at TIFR have developed the solution phase synthesis of dendritic plasmonic colloidosomes (DPCs) with varying interparticle distances between the gold nanoparticles (NPs) using a cycle-by-cycle growth approach by optimizing the nucleation-growth step. These DPCs absorbed the entire visible and near-infrared region of solar light, due to interparticle plasmonic coupling as well as the heterogeneity in the Au NP sizes, which transformed gold material to black gold.

Black (nano)gold was able to catalyze CO2 to methane (fuel) at atmospheric pressure and temperature, using solar energy. Researchers also observed the significant effect of the plasmonic hotspots on the performance of these DPCs for the purification of seawater to drinkable water via steam generation, temperature jump assisted protein unfolding, oxidation of cinnamyl alcohol using pure oxygen as the oxidant, and hydrosilylation of aldehydes.

Read more.

Tiny granules can help bring clean and abund…

Tiny granules can help bring clean and abundant fusion power to Earth

Beryllium, a hard, silvery metal long used in X-ray machines and spacecraft, is finding a new role in the quest to bring the power that drives the sun and stars to Earth. Beryllium is one of the two main materials used for the wall in ITER, a multinational fusion facility under construction in France to demonstrate the practicality of fusion power. Now, physicists from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and General Atomics have concluded that injecting tiny beryllium pellets into ITER could help stabilize the plasma that fuels fusion reactions.

Experiments and computer simulations found that the injected granules help create conditions in the plasma that could trigger small eruptions called edge-localized modes (ELMs). If triggered frequently enough, the tiny ELMs prevent giant eruptions that could halt fusion reactions and damage the ITER facility.

Scientists around the world are seeking to replicate fusion on Earth for a virtually inexhaustible supply of power to generate electricity. The process involves plasma, a very hot soup of free-floating electrons and atomic nuclei, or ions. The merging of the nuclei releases a tremendous amount of energy.

Read more.

qingzinano: Zeolite Hollow Fibers Taking advan…

qingzinano:

Zeolite Hollow Fibers

Taking advantage of coaxial electrospinning, zeolite hollow fibers were fabricated by Jiang and Yu’s group using coelectrospinning followed by calcination, in 2008 (Di et al., 2008). Core-shell fibers were obtained first, using a suspension of silicalite-1 NPs in PVP/ethanol solution as the outer fluid, while paraffin oil was used as the inner liquid. An appropriate proportion of PVP and silicalite-1 was necessary because the silicalite-1 suspension could not be electrospun alone, while the viscous PVP solution could make the blend feasible for fluent electrospinning and served as an adhesive to bond the silicalite-1 NPs together. By subsequent calcination in air at 550C for 6 h, these composite fibers transformed into zeolite hollow fibers with removal of paraffin oil, tetrapropylammonium hydroxide, and PVP. The zeolite hollow fibers had good mechanical strength with great performance of self-standing. Moreover, the zeolite hollow fibers had a hierarchical intersecting channel structure and rough wall constructed by the NPs. The morphology and chemical composition of the as-spun fibers composed of silicalite-1 and PVP by coelectrospinning are shown in Fig. 5.10.

Ceramics: Silicon oxynitride

Ceramics: Silicon oxynitride

While silicon oxynitride is technically defined as those ceramics with the general composition of SiOxNy (in the amorphous form, this means anything from SiO2 to Si3N4), the most well known form of this material has the chemical formula of Si2N2O. This is the only known intermediary crystalline phase, and can be found in small amounts in nature as the mineral sinoite, the crystal structure of which can be shown above. 

Most practical applications of this ceramic utilizes amorphous thin films of the material. The range of structures listed above allows for a range of properties that can be tuned based on the exact composition of the oxynitride in question (for example, SiO2 has a refractive index of 1.45, while Si3N4 has a refractive index of 2, which allows for a variety of waveguides to be constructed). 

The crystalline structure (Si2N2O), meanwhile, is known to be an excellent refractory material, with high chemical and oxidation resistance. Finally, these ceramics are occasionally doped with metal atoms, such as aluminum as a ceramic known as sialon, or lanthanides to produce phosphors. 

Sources/Further Reading: ( 1 ) ( 2 ) ( 3 – image 3 ) ( 4 ) ( 5 )

Image sources: ( 1 ) ( 2 )

Researchers design superhydrophobic ‘n…

Researchers design superhydrophobic ‘nanoflower’ for biomedical applications

Plant leaves have a natural superpower—they’re designed with water repelling characteristics. Called a superhydrophobic surface, this trait allows leaves to cleanse themselves from dust particles. Inspired by such natural designs, a team of researchers at Texas A&M University has developed an innovative way to control the hydrophobicity of a surface to benefit to the biomedical field.

Researchers in Dr. Akhilesh K. Gaharwar’s lab in the Department of Biomedical Engineering have developed a “lotus effect” by incorporating atomic defects in nanomaterials, which could have widespread applications in the biomedical field including biosensing, lab-on-a-chip, blood-repellent, anti-fouling and self-cleaning applications.

Superhydrophobic materials are used extensively for self-cleaning characteristic of devices. However, current materials require alteration to the chemistry or topography of the surface to work. This limits the use of superhydrophobic materials.

“Designing hydrophobic surfaces and controlling the wetting behavior has long been of great interest, as it plays crucial role in accomplishing self-cleaning ability,” Gaharwar said. “However, there are limited biocompatible approach to control the wetting behavior of the surface as desired in several biomedical and biotechnological applications.”

Read more.

The world’s first high-intensity laser…

The world’s first high-intensity laser pulses shaped like a corkscrew

University of California San Diego researchers have calculations for how to create high-intensity twisted laser beams—a flavor of laser pulse the world has likely never seen. These researchers also have done the math on how to use these corkscrew shaped laser pulses to do cutting-edge research. Finally, they have predictions on how the materials that they plan to “drill” into with corkscrew light pulses will respond.

Currently, all this work lives in the domains of theory and supercomputer simulations. But that’s about to change, thanks to funding from the National Science Foundation (NSF). A new grant will allow UC San Diego researchers to partner with experimentalists and actually run experiments probing interactions between high intensity twisted light and matter at Europe’s new, cutting edge Extreme Light Infrastructure (ELI) facilities in Romania and the Czech Republic. This is the first NSF grant to fund US-based researchers to test their theoretical work at ELI facilities.

Alexey Arefiev, a UC San Diego mechanical and aerospace engineering professor, is the Principle Investigator on the three-year NSF grant. The bulk of the experimental work will be done at the Extreme Light Infrastructure for Nuclear Physics (ELI-NP) in Romania, which recently premiered its 10 Petawatt high power laser system.

Read more.

A new path to understanding second sound in …

A new path to understanding second sound in Bose-Einstein condensates

There are two sound velocities in a Bose-Einstein condensate. In addition to the normal sound propagation there is second sound, which is a quantum phenomenon. Scientists in Ludwig Mathey’s group from the University of Hamburg have put forth a new theory for this phenomenon.

When you jump into a lake and hold your head under water, everything sounds different. Apart from the different physiological response of our ears in air and water, this derives from the different sound propagation in water compared to air. Sound travels faster in water, checking in at 1493 m/s, on a comfortable summer day of 25°C. Other liquids have their own sound velocity, like alcohol with 1144 m/s, and helium, if you go to a chilling -269°C for its liquefied state, with 180 m/s.

These liquids are referred to as classical liquids, examples for one of the primary states of matter. But if we cool down that helium a few degrees more, something dramatic happens, it turns into a quantum liquid. This macroscopic display of quantum mechanics is a superfluid, a liquid that flows without friction.

Read more.

Do NOT follow this link or you will be banned from the site!